Energy Conversion - Exam II

School of Engineering - Dep. of Industrial \& Mechanical Eng.
Name:

Solute kerr

Date: \quad Monday, May 19 ${ }^{\text {th }} 2014 ; 05: 00$ PM
Location: ENG Auditorium
Instructor: Dr. Wassim Habchi
Notes: \quad No documents allowed
Time: 2 hours

Problem I (25 points)

Consider a regenerative vapor power cycle with one open feedwater heater as shown below:

Steam enters the turbine at $8.0 \mathrm{MPa}, 480^{\circ} \mathrm{C}$ and expands to 0.8 MPa , where some of the steam is extracted and diverted to the open feedwater heater operating at 0.8 MPa . The remaining steam expands through the second-stage turbine to the condenser pressure of 0.01 MPa . Saturated liquid exits the open feedwater heater at 0.8 MPa . The isentropic efficiency of each turbine stage is 85% and each pump operates isentropically. If the net power output of the cycle is 100 MW , determine:
a) The fraction y of steam extracted from the turbine to the feedwater heater ($\mathbf{1 0}$ points).
b) The thermal efficiency of this cycle ($\mathbf{1 0}$ points).
c) The mass flow rate of steam entering the first turbine stage in tons /h (5 points).

Solution:

e) Energy bolo ce on open fol:

$$
\begin{aligned}
y h_{2}+(1-y) h_{s}=h_{6} & \Rightarrow y\left(h_{2}-h_{s}\right)=h_{6}-h_{s} \\
& \Rightarrow y=\frac{h_{6}-h_{s}}{h_{2}-h_{5}}
\end{aligned}
$$

but $h_{1}=3349.02 \mathrm{~kJ} / \mathrm{kg}$ and $s_{1}=6.65912 \mathrm{~kJ} / \mathrm{kg}$
(2) (25):

$$
\begin{gathered}
\begin{array}{l}
P_{2 s}=0.8 \pi P_{2} \\
s_{2 s}=s_{1}
\end{array} \longrightarrow \quad x_{2 s}=\frac{s_{2 s}-s_{f}}{s f 8}=\frac{6.65912-2.0657}{4.6160} \\
x_{2 s}=0.99944 \\
\Rightarrow h_{2 s}=h_{f}+x_{2 s} h_{f g}=720.87+0.99964 \times 2047.5=2767.28 \mathrm{~kJ} / 1 / \mathrm{g}
\end{gathered}
$$

but $\frac{h_{1}-h_{2 e}}{h_{1}-h_{25}}=0.85 \rightarrow h_{22}=h_{1}-0.85\left(h_{1}-h_{25}\right)$

$$
=3369.02-0.85(3369.02-2767.2,
$$

$$
h_{20}=2854.49 \mathrm{~kJ} / \mathrm{Kg}
$$

b) $\eta_{t h}=\frac{\dot{\omega}_{t}-\dot{\omega}_{p_{1}}-\dot{\omega}_{p_{2}}}{\dot{Q}_{m}}=\frac{\left(h_{1}-h_{2}\right)+(1-y)\left(h_{2}-h_{3}\right)-(1-y) v_{4}\left(P_{5}-p_{4}\right)-\left(P_{7}-P_{1}\right) v_{6}}{h_{1}-h_{7}}$
(2):

$$
\begin{aligned}
& h_{2}=2854.49 \mathrm{~kJ} / \mathrm{kg} \\
& P_{2}=0.8 \mathrm{nP}
\end{aligned}
$$

(3) (3):
but $\frac{h_{2}-h_{30}}{h_{2}-h_{35}}=0.85 \rightarrow h_{30}=h_{2}-0.85\left(h_{2}-h_{35}\right)=2854.49-0.85(2856.45$

$$
\begin{aligned}
& \left.\begin{array}{l}
P_{3 s}=0.01 \mathrm{mPe}=10 \mathrm{kPR} \\
S_{35}=S_{2}=6.84725 \mathrm{~kg} \mid \mathrm{Kg} \cdot \mathrm{~K}
\end{array}\right] \rightarrow x_{35}=\frac{s_{3 s}-s_{f}}{s_{f f}}=\frac{6.8472 \mathrm{~s}-0.6492}{7.4996} \\
& x_{35}=0.82645 \\
& \Rightarrow h_{35}=h_{f}+x_{3 s} h_{f f}=191.81+0.82645 \times 2392.1=2168.76 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

$$
\begin{aligned}
& * h_{6}=h_{p e} e .8 \pi p_{e}=720.87 \mathrm{~kg} / \mathrm{kg} \\
& \text { * } h_{5}=h_{4}+v_{4}\left(P_{5}-P_{4}\right)=h_{8 \text { e0.01nR }}+v_{f} \text { eo.01R Pe }\left(P_{5}-P_{4}\right) \\
& =191.81+0.001010(0.8-0.01) \times 10^{3} \\
& h_{5}=192.61 \mathrm{~kJ} / \mathrm{Kg}_{\mathrm{g}} \\
& \Rightarrow y=\frac{720.87-192.61}{2854.49-192.61}=0.19845 \text { क } 19.865 \%
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow h_{3 a}=2271.62 \mathrm{~kJ} / \mathrm{kg} \\
& v_{6}=v_{f} e 0.8 \pi R=0.001115 \mathrm{~m}^{3} / \mathrm{kg} \\
& \text { and } h_{7}=h_{6}+v_{6}\left(P_{7}-P_{6}\right)=720.87+0.001115(8-0.8) \times 10^{3} \\
& \Rightarrow h_{7}=728.9 \mathrm{KJ}_{\mathrm{J}} / \mathrm{Vg} \\
& \Rightarrow \eta_{\text {th }}=\frac{(3349.02-2854.49)+(1-0.19845)(2854.49-2271.62)-\begin{array}{c}
(1-0.19845)(0.00101) \\
(800-10) \\
-0.001115(8000-800)
\end{array}}{3349.02-728.9} \\
& \Rightarrow \eta_{\text {th }}=\frac{(434.56+467.2)-0.63956-8.028}{2620.12}=0.36376 \simeq 36.4 \%
\end{aligned}
$$

Ind method:

$$
\begin{aligned}
\eta_{\text {th }} & =1-\frac{\rho_{0} t}{q_{1}}=1-\frac{(1-y)\left(h_{3}-h_{4}\right)}{h_{1}-h_{7}}=1-\frac{(1-0.19845)(2271.62-191.81)}{3349.02-728.9} \\
& =0.36374 \simeq 36.4 \%
\end{aligned}
$$

$\Rightarrow \dot{\omega}_{\text {meta }}=100 n \omega=\dot{m} q_{\text {ut in }}=\dot{m}\left(\rho_{i}-\rho_{0} t\right)$

$$
\begin{aligned}
\Rightarrow \dot{m}= & \frac{100 \times 10^{3}}{(3348.02-728.9)-(1-0.19845)(2271.62-191.81)} \\
\dot{m}= & 104.93 \mathrm{~kg} / \mathrm{s}=104.93 \times 10^{-3} \times 3600 \text { toms } / \mathrm{h} \\
& \Rightarrow \dot{m}=377.75 \text { tons } / \mathrm{h}
\end{aligned}
$$

Problem II (30 points)
Air enters the compressor of a combined gas turbine-vapor power plant at $100 \mathrm{kPa}, 25^{\circ} \mathrm{C}$. The isentropic compressor efficiency is 85% and the compressor pressure ratio is 14 . The air passing through the combustor receives energy by heat transfer at a rate of 50 MW with no significant decrease in pressure. At the inlet to the turbine the air is at $1250^{\circ} \mathrm{C}$. The air expands through the turbine, which has an isentropic efficiency of 87%, to a pressure of 100 kPa . Then, the air passes through the interconnecting heat exchanger and is finally discharged at $200^{\circ} \mathrm{C}, 100 \mathrm{kPa}$. Steam enters the turbine of the vapor cycle at $12.5 \mathrm{MPa}, 500^{\circ} \mathrm{C}$, and expands to a condenser pressure of 10 kPa . Water enters the pump as a saturated liquid at 10 kPa . The turbine and pump have isentropic efficiencies of 90 and 100%, respectively. Cooling water enters the condenser at $20^{\circ} \mathrm{C}$ and exits at $35^{\circ} \mathrm{C}$. Determine:
a) The mass flow rates of the air, steam, and cooling water, each in kg / s ($\mathbf{1 0}$ points). (given $\mathrm{C}_{0}=4.2 \mathrm{~kg} / \mathrm{g}$
b) The net power developed by the gas turbine cycle and the vapor cycle, respectively, each in MW ($\mathbf{1 0}$ points).
c) The thermal efficiency of the combined cycle ($\mathbf{1 0}$ points).

Solution:
e) * Energy bela ce on consbusto:

$$
\dot{Q}_{i}=\min _{\text {ai }}\left(h_{3}-h_{2}\right) \rightarrow \dot{m a i n}_{\operatorname{cin}}=\frac{Q_{i}}{h_{3}-h_{2}}
$$

$$
\text { A-17: } h_{3}=h \text { p1523k }=1663.872 \mathrm{~kJ} 1 \mathrm{hg} \quad \& P_{r_{3}}=641.34 \mathrm{~s}
$$

$$
\begin{aligned}
& \frac{P_{r_{2}}}{P_{r_{1}}}=\frac{P_{2}}{P_{1}}=14 \\
& \text { but } P_{r_{1}}=P_{r e} 288 \mathrm{~K}=1.3543 \\
& \Rightarrow P_{r_{2}}=14 \times 1.3543=18.3602 \Rightarrow h_{25}=632.35 \mathrm{~kJ} / \mathrm{Kg}_{\mathrm{g}} . \\
& \text { but } \frac{h_{1}-h_{25}}{h_{1}-h_{20}}=h_{c} \Rightarrow h_{20}=h_{1}-\frac{h_{1}-h_{25}}{n_{c}}=298.18-\frac{298.18-632.35}{0.85} \\
& \Rightarrow m_{\text {li }}=\frac{50 \times 10^{3}}{1663.872-691.32}=51.41 \mathrm{~kg} / \mathrm{s} \quad \quad \quad h_{r_{0}}=631.32 \mathrm{~kJ} / \mathrm{Kg}_{\mathrm{g}}
\end{aligned}
$$

* Energy bola ce on Heat exch gur

$$
\begin{gathered}
\dot{m_{a i n}\left(h_{4}-h_{5}\right)=\dot{m}_{5}\left(h_{7}-h_{6}\right)} \begin{array}{l}
\Rightarrow \dot{m}_{5}=\dot{m}_{\text {ain }} \frac{h_{6}-h_{5}}{h_{7}-h_{6}} \\
\frac{P_{r_{4}}}{P_{r_{3}}}=\frac{P_{4}}{P_{3}}=\frac{1}{14} \rightarrow P_{r_{6}}=\frac{P_{r_{3}}}{14}=\frac{641.345}{14}=45.8532 \\
A-17 \Rightarrow h_{45}=812.5 K_{5} / k_{g}
\end{array}
\end{gathered}
$$

but $\frac{h_{3}-h_{42}}{h_{3}-h_{45}}=0.87 \Rightarrow h_{42}=h_{3}-0.87\left(h_{3}-h_{48}\right)$

$$
\Rightarrow h_{4 e}=323.18 \mathrm{~kJ} / \mathrm{k}_{\mathrm{p}}
$$

(2(5): $h_{s}=h \rho 473 \mathrm{k}=475.315 \mathrm{~kJ} / \mathrm{kg}$
(9): $h_{7}=3343.6 \mathrm{~kJ} / \mathrm{Mg}_{\mathrm{g}}$ and $57=6.6651 \mathrm{~kJ}$ lug K

$$
\begin{aligned}
& \text { and } h_{6}=h_{s}+v_{s}\left(P_{6}-P_{s}\right)=h_{f \rho \rho \text { oke }}+v_{f \text { lock }}\left(P_{L}-P_{3}\right) \\
& =191.81+0.00101(12500-10)=204.425 \mathrm{~kg} / \mathrm{lyg}^{2} \\
& \Rightarrow i_{s}=51.41 \times \frac{323.18-475.315}{3343.6-204.425}=7.335 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

* Energy bela ce on condenses:

$$
\begin{aligned}
& \dot{m}_{\omega} c_{\omega} \Delta T_{\omega}=\dot{m}_{s}\left(h_{8}-h_{s}\right) \\
& \dot{m}_{\omega}=\frac{\dot{m}_{s}\left(h_{8}-h_{s}\right)}{c_{\omega} \Delta T_{\omega}}
\end{aligned}
$$

$$
\text { but } h_{g}=h_{g \rho \text { co } R_{e}}=181.81 \mathrm{~K}_{J} / k_{g}
$$

$$
\begin{aligned}
& p_{8 s}= \text { wok Pe } \\
& s_{8 s}=57=6.4651 \mathrm{~kg}_{\mathrm{g}} \mathrm{Mg}_{\mathrm{g}} k \\
& \Rightarrow h_{g s}=h_{8 f}+x_{\text {gs }} h_{g s}=181.81+0.7755 \times 2392.1=2046.88 \mathrm{~kg} / \mathrm{kg} \\
&
\end{aligned}
$$

$b_{u} \frac{h_{7}-h_{82}}{h_{7}-h_{85}}=0.3 \Rightarrow h_{89}=h_{7}-0.3\left(h_{7}-h_{85}\right)$

$$
=3343.6-0.9(3363.6-2046.88)
$$

$$
h_{82}=2176.55 \mathrm{~kg} / \mathrm{lyg}_{\mathrm{g}}
$$

$$
\Rightarrow i_{10}=7.335 \times \frac{2176.55-181.81}{4.2 \times 15}=231.1 \mathrm{~kg} / \mathrm{s}
$$

b) $* \dot{\omega}_{\text {nat, gas }}=\dot{m}_{\text {ain }}\left[\left(h_{3}-h_{4}\right)-\left(h_{2}-h_{1}\right)\right]=51.41[(1663.872-823.18)-(681.32-2581.18)$
$\dot{\omega}_{\text {natiges }}=17867.65 \mathrm{~K} \mathrm{\omega} \simeq 17.87 \mathrm{M} \mathrm{\omega}$

$$
* \dot{\omega}_{\text {met, veep }}=\dot{m}_{5}\left[\left(h_{7}-h_{8}\right)-\left(h_{6}-h_{5}\right)\right]=7.335[(3343.6-2176.55)-(204.425-181.81)]
$$

$$
\omega_{\text {nut }} \text { rep }=8467.78 \mathrm{~kW} \simeq 8.67 \mathrm{M} \mathrm{\omega}
$$

c) $\eta_{\text {th }}=\frac{\dot{\omega}_{\text {met, go }}+\dot{\omega}_{\text {met, oe }}}{\dot{Q} \dot{n}}=\frac{17.87+8.47}{50}=0.5268=52.68 \%$

Problem III (25 points)
The figure below shows the schematic diagram of a vapor compression refrigeration system with two evaporators using Refrigerant 134a as the working fluid. This arrangement is used to achieve refrigeration at two different temperatures with a single compressor and a single condenser. The low-temperature evaporator operates at $-18^{\circ} \mathrm{C}$ with saturated vapor at its exit and has a refrigerating capacity of 3 tons (1 ton of refrigeration is equivalent to $211 \mathrm{~kJ} / \mathrm{min}$). The higher temperature evaporator produces saturated vapor at 320 kPa at its exit and has a refrigerating capacity of 2 tons. Compression is isentropic to the condenser pressure of 1 MPa . There are no significant pressure drops in the flows through the condenser and the two evaporators, and the refrigerant leaves the condenser as saturated liquid at 1 MPa . Determine:
a) The mass flow rate of refrigerant through each evaporator, in $\mathbf{k g} / \mathbf{m i n}(10$ points $)$.
b) The compressor power input, in $\mathbf{k W}$ ($\mathbf{\$}$ points).
c) The rate of heat transfer from the refrigerant passing through the condenser, in kW (5) 4 points).
d) The Coefficient Of Performance of this refrigeration system points).

Solution:
e) $\dot{Q}_{\dot{n}_{11}}=\dot{m}_{1}\left(h_{6}-h_{5}\right) \quad$ but $\quad h_{5}=h_{6}=h_{3}=h_{f} \rho 1 n \mathrm{me}=107.32 \mathrm{~kg} / \mathrm{lgg}_{g}$

$$
h_{6}=\log _{g} \theta-18^{\circ} \mathrm{C}=239.64 \mathrm{KJ} / \mathrm{lg}
$$

$$
\Rightarrow \dot{m}_{1}=\frac{Q_{i_{1}}}{h_{6}-h_{s}}=\frac{3 \times 211}{239.64-107.32}=4.784 \mathrm{~kg} / \mathrm{min}
$$

$$
A_{0} \dot{q}_{1,12}=\dot{m}_{2}\left(h_{7}-a_{4}\right)
$$

$$
\text { with } h_{7}=h_{g} \rho_{300 \mathrm{kR}}=251.88 \mathrm{Kr} / \mathrm{IVg}
$$

$$
\Rightarrow \dot{m}_{2}=\frac{\dot{Q}_{n_{1}, 2}}{h_{7}-h_{4}}=\frac{2 \times 211}{251.88-107.32}=2.919 \mathrm{~kg} / \mathrm{min}
$$

b) $\dot{\omega}_{c}=\left(\dot{m}_{1}+\dot{m}_{2}\right)\left(h_{2}-h_{1}\right)$
$b_{u} t \dot{m}_{2} h_{8}+\dot{m}_{1} h_{6}=\left(\dot{m}_{1}+\dot{m}_{2}\right) h_{1}$ with $h_{8}=h_{7}$

$$
\begin{aligned}
& \Rightarrow h_{1}=\frac{\dot{m}_{2} h_{7}+\dot{m}_{1} h_{6}}{\dot{m}_{1}+\dot{m}_{2}}=\frac{2.919 \times 251.88+4.784 \times 239.64}{2.919+4.784}
\end{aligned}
$$

(2) (2):

$$
\begin{aligned}
& P_{2}=1 n R e \\
& s_{2}=s_{1}=0.96207 \mathrm{~kg} \text { 魧 } \mathrm{K} \rightarrow h_{2}=285.87 \mathrm{KJ} / \mathrm{Kg} \\
& \Rightarrow \dot{\omega}_{c}=(2.819+4.784)(285.87-244.27)=320.44 \mathrm{~kJ} / \mathrm{min} \\
& =5.34 \mathrm{k} \mathrm{\omega}
\end{aligned}
$$

c)

$$
\begin{aligned}
\dot{Q}_{2 t} & =\left(\dot{m}_{1}+\dot{m}_{2}\right)\left(h_{2}-h_{3}\right)=(2.519+4.784)(285.87-107.32) \\
& =1375.37 \mathrm{~kJ} / \mathrm{mi}^{2}=22.92 \mathrm{k} \mathrm{\omega}
\end{aligned}
$$

d) $C O P=\frac{\dot{Q}_{\dot{n}_{1}}+\dot{Q}_{\dot{n}, 2}}{\dot{\omega}_{c}}=\frac{(2+3) \times 211}{320.44}=3.23$

Problem IV (20 points)
An ideal vapor-compression heat pump cycle with Refrigerant 134a as the working fluid provides heating at a rate of 15 kW to maintain a building at $20^{\circ} \mathrm{C}$ when the outside temperature is $5^{\circ} \mathrm{C}$. Saturated vapor at 240 kPa leaves the evaporator, and saturated liquid at 800 kPa leaves the condenser. Determine:
a) The mass flow rate of refrigerant flowing through this cycle (1 points).
b) The power input to the compressor, in $\mathbf{k W}$ (3 points).
c) The coefficient of performance (3 points).
d) The maximum Coefficient Of Performance that this heat pump can reach (3 points).

Solution:

$$
\begin{aligned}
& \dot{Q}_{H}=15 K W \quad T_{H}=20^{\circ} \mathrm{C} \quad T_{L}=S^{\circ} \mathrm{C} \\
& P_{\text {ewep }}=240 \mathrm{KPe} \\
& P_{\text {co nd }}=800 \mathrm{KP}
\end{aligned}
$$

$$
\text { but } h_{3}=h_{f} \rho_{800 \mathrm{kPe}}=35.47 \mathrm{~kJ} \mathrm{~N}_{\mathrm{f}}
$$

$$
\text { ((2): } \begin{aligned}
& P_{2}=800 \mathrm{KR} \\
& s_{2}=s_{1}=0.33458 \mathrm{kj} / \mathrm{kg} \cdot \mathrm{~K} \longrightarrow h_{2}=272.31 \mathrm{KJ} / \mathrm{kg}
\end{aligned}
$$

$$
\Rightarrow \text { in }=\frac{15}{272.31-95.47}=0.0848 \mathrm{~kg} / \mathrm{s}
$$

$$
\text { b) } \dot{w}_{\text {wop }}=\dot{m}\left(h_{2}-h_{1}\right)=0.0848 \times(272.31-247.28)=2.12 \mathrm{kw}
$$

$$
\text { c) } \operatorname{coP}=\frac{\dot{Q}_{H}}{\grave{\omega}_{0-p}}=\frac{15}{2.12}=7.0754
$$

$$
\text { d) }\left(Q P_{\text {connect }}=\frac{1}{1-T_{L} / T_{H}}=\frac{1}{1-278 / 233}=19.53\right.
$$

$$
\begin{aligned}
& \text { a) } \dot{Q}_{H}=\dot{m}\left(h_{2}-h_{3}\right) \\
& \Rightarrow \dot{m}=\frac{\dot{Q}_{4}}{h_{2}-h_{3}} \\
& \text { And ©O: } \\
& h_{1}=\log \text { e240kPe }=247.28 \mathrm{~kJ}_{\mathrm{J} / \mathrm{kg}} \\
& s_{1}=s_{g} \rho 240 \mathrm{kR}=0.93458 \mathrm{~kJ} \text { 汭 K }
\end{aligned}
$$

